By Topic

Explanation of the device operation principle of amorphous silicon/ crystalline silicon heterojunction solar cell and role of the inversion of crystalline silicon surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ghosh, K. ; Arizona State Univ., Tempe, AZ, USA ; Tracy, C.J. ; Herasimenka, S. ; Honsberg, C.
more authors

The device operation principle of amorphous silicon/crystalline silicon heterojunction solar cell is discussed. The band diagram obtained by the computer model developed in the commercial simulator Sentaurus shows that the c-Si surface is inverted at the interface between a-Si and c-Si (heterointerface). A strong inversion gives a strong electric field at the c-Si surface, which in turn facilitates the transport of minority carriers across the heterointerface. A high performance device requires a strongly inverted c-Si surface. Calculations are performed to show that the doping of the doped a-Si layer, the thickness of the intrinsic layer, and the defect state density at the heterointerface all affect the inversion of the crystalline silicon surface. Unlike homojunction devices, the defects in heterojunction devices have a greater role in transport mechanism than in recombination mechanism. The results show that in devices with a large number of defects at the interface, the fill factor degrades with little change in open circuit voltage. This explains why it is relatively easy to obtain VOC's approaching 700 mV with heterojunctions but often with low fill factors.

Published in:

Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE

Date of Conference:

20-25 June 2010