By Topic

Towards industrially feasible high-efficiency n-type Si solar cells with boron-diffused front side emitter - combining firing stable Al2O3 passivation and fine-line printing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Richter, A. ; Fraunhofer Inst. for Solar Energy Syst. (ISE), Freiburg, Germany ; Hoteis, M. ; Benick, J. ; Henneck, S.
more authors

In this work we combine the firing stable Al2O3 passivation of a boron emitter with an industrially feasible contacting technology to gain a complete front side concept of n-type silicon solar cells with a front side junction. The contact scheme consists of a fine-line printed seed layer, using a silver ink, which is subsequently fired and plated. We studied the contact formation of the applied seed layer on a shallow, industrial-type boron emitter by measuring the specific contact resistance for different firing processes. To gain a deeper insight into the contact formation, SEM micrographs were made from the contact interface. Moreover, the emitter shunting has been studied by firing p+nn+ test structures at temperatures between 700 and 850 °C. Regarding the passivation of the boron emitter, the firing stability of an Al2O3/SiNx layer stack was investigated on symmetrically processed p+np+ lifetime samples for the same firing temperature range. Based on these results, p+nn+ solar cells have been fabricated, featuring a full-area, phosphorous-doped back surface field at the rear. Conversion efficiencies up to 20.5% and fill factors of 80.8% could be achieved, demonstrating the high-efficiency contact formation to the boron-doped emitter.

Published in:

Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE

Date of Conference:

20-25 June 2010