By Topic

Copper as conducting layer in advanced front side metallization processes for crystalline silicon solar cells, exceeding 20% on printed seed layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Bartsch ; Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany ; A. Mondon ; C. Schetter ; M. Hörteis
more authors

Our work deals with the creation of copper-containing stack systems for the front side metallization of silicon solar cells. In this contribution, we give an overview of different approaches from our labs. We have developed processes to apply nickel diffusion barriers onto seed layers and directly onto silicon with both electrolytic and electroless processes. These are reinforced by a light-induced copper plating process. On aerosol-printed seed layers, cell efficiencies equal to those of reference cells with advanced silver metallization have been achieved with a nickel/copper/tin stack system (16.8% on 5×5cm2 industrial Cz-material, 20.3% on FZ high-efficiency substrates, 2×2cm2). As the long term stability of the resulting cells is a critical factor, there is need for a method to characterize this aspect. We developed a thermally accelerated ageing procedure, mirroring the total copper diffusion during a typical cell life cycle. Solar cells with advanced metal stack systems have shown no significant decrease in performance during this thermal stress test.

Published in:

Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE

Date of Conference:

20-25 June 2010