By Topic

3D object recognition from range images using transform invariant object representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akagündüz, E. ; Electr. & Electron. Eng. Dept., Middle East Tech. Univ., Ankara, Turkey ; Ulusoy, I.

3D object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3D surfaces are represented by sparse, repeatable, informative and semantically meaningful 3D surface structures, which are called multiscale features. These features are extracted with their scale (metric size and resolution) using the classified scale-space of 3D surface curvatures. Triplets of these features are used to represent the surface topologies invariant to transformation (scaling, rotation, translation) and geometric hashing is used for object recognition. Scaled and both scaled and occluded versions of range images from a 3D object database are tested and the experimental results are compared with other methods in the literature.

Published in:

Electronics Letters  (Volume:46 ,  Issue: 22 )