Cart (Loading....) | Create Account
Close category search window

Zeno Stability of the Set-Valued Bouncing Ball

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Or, Y. ; Fac. of Mech. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Teel, A.R.

Hybrid dynamical systems consist of both continuous-time and discrete-time dynamics. A fundamental phenomenon that is unique to hybrid systems is Zeno behavior, where the solution involves an infinite number of discrete transitions occurring in finite time, as best illustrated in the classical example of a bouncing ball. In this note, we study the hybrid system of the set-valued bouncing ball, for which the continuous-time dynamics has a set-valued right-hand side. This system is typically used for deriving bounds on the solution of nonlinear single-valued hybrid systems in a small neighborhood of a Zeno equilibrium point in order to establish its local stability. We utilize methods of Lyapunov analysis and optimal control to derive a necessary and sufficient condition for Zeno stability of the set-valued bouncing ball system and to obtain a tight bound on the Zeno time as a function of initial conditions.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.