Cart (Loading....) | Create Account
Close category search window
 

Mitigating Blackouts via Smart Relays: A Machine Learning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Zhang ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Ilic, M.D. ; Tonguz, O.K.

In this paper, we investigate the protective relays used in electric power systems and their role in large-scale blackouts. After reviewing the state of the art, to mitigate future blackouts, we propose a new machine learning approach for protective relays based on binary hypothesis testing, support vector machines (SVMs), and communications between the protective relays and the supervisory control and data acquisition (SCADA), which we call smart protective relays. The goal of smart relays is to classify and discriminate the normal conditions from fault conditions via local measurements. It is shown that the proposed SVM-based smart relays can detect the location of an initial fault using local current, voltage, real power, and reactive power measurements, and by monitoring these metrics, they can make a correct decision even when the state of the system changes after some equipment failure. We show that by making an intelligent decision on whether and when to trip, and communicating the changes observed to SCADA for fast and intelligent decision making, SVM-based smart relays have the potential to mitigate large-scale blackouts and confine them to much smaller areas. By deploying SVM-based smart relays only at relatively few locations where they have the highest probability to be tripped incorrectly, the probability of cascade of failures and a blackout can be greatly reduced.

Published in:

Proceedings of the IEEE  (Volume:99 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.