By Topic

LDPC code design for transmission of correlated sources across noisy channels without CSIT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arvind Yedla ; Department of Electrical and Computer Engineering, Texas A&M University, USA ; Henry D. Pfister ; Krishna R. Narayanan

We consider the problem of transmitting correlated data after independent encoding to a central receiver through orthogonal channels. We assume that the channel state information is not known at the transmitter. The receiver has access to both the source correlation and the channel state information. We provide a generic framework for analyzing the performance of joint iterative decoding, using density evolution. Using differential evolution, we design punctured systematic LDPC codes to maximize the region of achievable channel conditions, with joint iterative decoding. The main contribution of this paper is to demonstrate that properly designed LDPC can perform well simultaneously over a wide range of channel parameters.

Published in:

2010 6th International Symposium on Turbo Codes & Iterative Information Processing

Date of Conference:

6-10 Sept. 2010