By Topic

Fast High-Quality Volume Ray Casting with Virtual Samplings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Byeonghun Lee ; Seoul Nat. Univ., Seoul, South Korea ; Jihye Yun ; Jinwook Seo ; Byonghyo Shim
more authors

Volume ray-casting with a higher order reconstruction filter and/or a higher sampling rate has been adopted in direct volume rendering frameworks to provide a smooth reconstruction of the volume scalar and/or to reduce artifacts when the combined frequency of the volume and transfer function is high. While it enables high-quality volume rendering, it cannot support interactive rendering due to its high computational cost. In this paper, we propose a fast high-quality volume ray-casting algorithm which effectively increases the sampling rate. While a ray traverses the volume, intensity values are uniformly reconstructed using a high-order convolution filter. Additional samplings, referred to as virtual samplings, are carried out within a ray segment from a cubic spline curve interpolating those uniformly reconstructed intensities. These virtual samplings are performed by evaluating the polynomial function of the cubic spline curve via simple arithmetic operations. The min max blocks are refined accordingly for accurate empty space skipping in the proposed method. Experimental results demonstrate that the proposed algorithm, also exploiting fast cubic texture filtering supported by programmable GPUs, offers renderings as good as a conventional ray-casting algorithm using high-order reconstruction filtering at the same sampling rate, while delivering 2.5x to 3.3x rendering speed-up.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:16 ,  Issue: 6 )