Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Comparative Analysis of Multidimensional, Quantitative Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

When analyzing multidimensional, quantitative data, the comparison of two or more groups of dimensions is a common task. Typical sources of such data are experiments in biology, physics or engineering, which are conducted in different configurations and use replicates to ensure statistically significant results. One common way to analyze this data is to filter it using statistical methods and then run clustering algorithms to group similar values. The clustering results can be visualized using heat maps, which show differences between groups as changes in color. However, in cases where groups of dimensions have an a priori meaning, it is not desirable to cluster all dimensions combined, since a clustering algorithm can fragment continuous blocks of records. Furthermore, identifying relevant elements in heat maps becomes more difficult as the number of dimensions increases. To aid in such situations, we have developed Matchmaker, a visualization technique that allows researchers to arbitrarily arrange and compare multiple groups of dimensions at the same time. We create separate groups of dimensions which can be clustered individually, and place them in an arrangement of heat maps reminiscent of parallel coordinates. To identify relations, we render bundled curves and ribbons between related records in different groups. We then allow interactive drill-downs using enlarged detail views of the data, which enable in-depth comparisons of clusters between groups. To reduce visual clutter, we minimize crossings between the views. This paper concludes with two case studies. The first demonstrates the value of our technique for the comparison of clustering algorithms. In the second, biologists use our system to investigate why certain strains of mice develop liver disease while others remain healthy, informally showing the efficacy of our system when analyzing multidimensional data containing distinct groups of dimensions.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:16 ,  Issue: 6 )