Cart (Loading....) | Create Account
Close category search window

Frequency-Weighted Discrete-Time LPV Model Reduction Using Structurally Balanced Truncation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abbas, H.S. ; Electr. Eng. Dept., Assiut Univ., Assiut, Egypt ; Werner, H.

This paper proposes a method for frequency weighted discrete-time linear parameter-varying (LPV) model reduction with bounded rate of parameter variation, using structurally balanced truncation with a priori (nontight) upper error bounds for each fixed parameter. For systems with both input and output weighting filters, guaranteed stability of the reduced-order model is proved as well as the existence of solutions, provided that the full-order model is stable. A technique based on cone complementarity linearization is proposed to solve the associated linear matrix inequality (LMI) problem. Application to the model of a gantry robot illustrates the effectiveness of the approach. Moreover, a method is proposed to make the reduced order model suitable for practical LPV controller synthesis.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.