Cart (Loading....) | Create Account
Close category search window
 

Dynamic Energy Resource Control of Power Electronics in Local Area Power Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Weaver, W.W. ; Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI, USA

In a local area power system, all components of the system, including sources, loads, and distribution have multiple commitments and responsibilities. These commitments include serving the energy needs of a local load, but also maintaining the efficiency and stability of the overall system. Then, the control law of a power converter should consider these objectives, but also needs to anticipate the reaction of other converters within the power network. A differential game-theoretic approach is proposed to derive sliding surfaces that uses a component's objective and operating characteristics to plan an optimal state trajectory during a transient without the need for communication channels or centralized control. The optimal trajectory includes considerations for maintaining local operation of the converter, as well as the stability of the system as a whole. This paper introduces a geometric control surface based on a change of variables that simply and effectively implements a power buffer function in multiple load converters within a power network and microgrids. The formulation and implementation of the optimal surfaces are presented, in addition to experimental validation of the new power buffer control law.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.