By Topic

IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Triguero, I. ; Dept. of Comput. Sci. & Artificial Intell., Univ. of Granada, Granada, Spain ; Garcia, S. ; Herrera, F.

Nearest prototype methods are a successful trend of many pattern classification tasks. However, they present several shortcomings such as time response, noise sensitivity, and storage requirements. Data reduction techniques are suitable to alleviate these drawbacks. Prototype generation is an appropriate process for data reduction, which allows the fitting of a dataset for nearest neighbor (NN) classification. This brief presents a methodology to learn iteratively the positioning of prototypes using real parameter optimization procedures. Concretely, we propose an iterative prototype adjustment technique based on differential evolution. The results obtained are contrasted with nonparametric statistical tests and show that our proposal consistently outperforms previously proposed methods, thus becoming a suitable tool in the task of enhancing the performance of the NN classifier.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 12 )