By Topic

Predicting Tissue Conductivity Influences on Body Surface Potentials—An Efficient Approach Based on Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Weber, F.M. ; Inst. of Biomed. Eng., Karlsruhe Inst. of Technol., Karlsruhe, Germany ; Keller, D.U.J. ; Bauer, S. ; Seemann, G.
more authors

In this paper, we present an efficient method to estimate changes in forward-calculated body surface potential maps (BSPMs) caused by variations in tissue conductivities. For blood, skeletal muscle, lungs, and fat, the influence of conductivity variations was analyzed using the principal component analysis (PCA). For each single tissue, we obtained the first PCA eigenvector from seven sample simulations with conductivities between ±75% of the default value. We showed that this eigenvector was sufficient to estimate the signal over the whole conductivity range of ±75%. By aligning the origins of the different PCA coordinate systems and superimposing the single tissue effects, it was possible to estimate the BSPM for combined conductivity variations in all four tissues. Furthermore, the method can be used to easily calculate confidence intervals for the signal, i.e., the minimal and maximal possible amplitudes for given conductivity uncertainties. In addition to that, it was possible to determine the most probable conductivity values for a given BSPM signal. This was achieved by probing hundreds of different conductivity combinations with a numerical optimization scheme. In conclusion, our method allows to efficiently predict forward-calculated BSPMs over a wide range of conductivity values from few sample simulations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 2 )