System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

In Vivo and Real-Time Measurement of Magnetic Nanoparticles Distribution in Animals by Scanning SQUID Biosusceptometry for Biomedicine Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chieh, J.J. ; Inst. of Electro-Opt. Sci. & Technol., Nat. Taiwan Normal Univ., Taipei, Taiwan ; Tseng, W.K. ; Horng, H.E. ; Hong, C.Y.
more authors

Magnetic nanoparticles have been widely applied to biomagnetism, such as drug deliver, magnetic labeling, and contrast agent for in vivo image, etc. To localize the distribution of these magnetic particles in living organism is the first important issue to confirm the effects of magnetic nanoparticles and also evaluate the possible untoward effects. In this study, a scanning high Tc rf-SQUID superconducting quantum interference devices (SQUIDs) biosusceptometry, composed of static SQUID unit and scanning coil sets, is developed for biomedicine study with the advantages of easy operation and unshielded environment. The characteristics tests showed that the system had the low noise of 8 pT/Hz at 400 Hz and the high sensitivity with the minimum detectable magnetization around 4.5 × 10-3 EMU at distance of 13 mm. A magnetic nanoparticle detection test, performed by ex vivo scanning of the magnetic fluids filled capillary under swine skin for simulation of blood vessels in living bodies, confirmed that the system is feasible for dynamic tracking of magnetic nanoparticles. Based on this result, we performed further studies in rats to clarify the dynamic distribution of magnetic nanoparticle in living organism for the pharmacokinetics analysis like drug delivers, and propose the possible physiological metabolism of intravenous magnetic nanoparticles.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 10 )