By Topic

A Micropower Miniature Piezoelectric Actuator for Implantable Middle Ear Hearing Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhigang Wang ; Inst. for Med. Sci. & Technol. (IMSaT), Univ. of Dundee, Dundee, UK ; Mills, R. ; Hongyan Luo ; Xiaolin Zheng
more authors

This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<;3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 2 )