By Topic

Time Series Models for Semantic Music Annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Coviello, E. ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Chan, A.B. ; Lanckriet, G.

Many state-of-the-art systems for automatic music tagging model music based on bag-of-features representations which give little or no account of temporal dynamics, a key characteristic of the audio signal. We describe a novel approach to automatic music annotation and retrieval that captures temporal (e.g., rhythmical) aspects as well as timbral content. The proposed approach leverages a recently proposed song model that is based on a generative time series model of the musical content-the dynamic texture mixture (DTM) model-that treats fragments of audio as the output of a linear dynamical system. To model characteristic temporal dynamics and timbral content at the tag level, a novel, efficient, and hierarchical expectation-maximization (EM) algorithm for DTM (HEM-DTM) is used to summarize the common information shared by DTMs modeling individual songs associated with a tag. Experiments show learning the semantics of music benefits from modeling temporal dynamics.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 5 )