By Topic

Automatic code generation for real-time implementation of Model Predictive Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kvasnica, M. ; Inst. of Inf. Eng., Autom., & Math., Slovak Univ. of Technol. in Bratislava, Bratislava, Slovakia ; Rauova, I. ; Fikar, M.

Model Predictive Control (MPC) is a proven control concept with many applications in the process industry. Popularity of the framework is mainly due to its ability to optimize behavior of the process while respecting physical and economical constraints. The major challenge of implementing MPC in real time on low-cost hardware is the inherent computational complexity. To address this goal, it is proposed to solve a given MPC problem using parametric programming, which encodes the optimal control moves as a lookup table. A great advantage being that such tables can then be processed even with low computational resources and therefore allow MPC to be deployed to low cost control devices. In the paper we present a unique software tool which allows MPC problems to be designed with low human effort, and is capable to automatically generate real-time executable code for various target platforms.

Published in:

Computer-Aided Control System Design (CACSD), 2010 IEEE International Symposium on

Date of Conference:

8-10 Sept. 2010