By Topic

Distributional uncertainty analysis using polynomial chaos expansions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nagy, Z.K. ; Chem. Eng. Dept., Loughborough Univ., Loughborough, UK ; Braatz, R.D.

A computationally efficient approach is presented that quantifies the influence of parameter uncertainties on the states and outputs of finite-time control trajectories for nonlinear systems, based on the approximate representation of the model via polynomial chaos expansion. The approach is suitable for studying the uncertainty propagation in open-loop or closed-loop systems. A quantitative and qualitative assessment of the method is performed in comparison to the Monte Carlo simulation technique that uses the nonlinear model for uncertainty propagation. The polynomial chaos expansion-based approach is characterized by a significantly lower computational burden compared to Monte Carlo approaches, while providing a good approximation of the shape of the uncertainty distribution of the process outputs. The techniques are applied to the crystallization of an inorganic chemical with uncertainties in the nucleation and growth parameters.

Published in:

Computer-Aided Control System Design (CACSD), 2010 IEEE International Symposium on

Date of Conference:

8-10 Sept. 2010