By Topic

Development of a neural network based surface roughness prediction system using cutting parameters and an accelerometer in turning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
İlhan Asiltürk ; Department of Mechanical Education, Faculty of Technical Education, University of Selçuk, 42075 Konya, Turkey ; Ali Ünüvar

In this work, a technique is proposed to predict surface roughness by using neural network. Surface roughness could be predicted within a reasonable degree of accuracy by taking feed rate, cutting speed, depth of cut and three orthogonal axis (x, y, z) signals of vibrations of tool holder as input parameters. 27 experiments were performed by using a CNC lathe with a carbide cutting tool. Experimental data obtained from turning process were used for training and testing of neural network architecture based prediction system. When experimental and prediction results were compared, it has been seen that a mean accuracy of 91,17% was achieved.

Published in:

Electro/Information Technology (EIT), 2010 IEEE International Conference on

Date of Conference:

20-22 May 2010