By Topic

Memory-efficient implementation of a graphics processor-based cluster detection algorithm for large spatial databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thapa, R.J. ; Grand Valley State Univ., Allendale, MI, USA ; Trefftz, C. ; Wolffe, G.

Numerous approaches have been proposed for detecting clusters, groups of data in spatial databases. Of these, the algorithm known as Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a recent approach which has proven efficient for larger databases. Graphical Processing Units (GPUs), used originally to aid in the processing of high intensity graphics, have been found to be highly effective as general purpose parallel computing platforms. In this project, a GPU-based DBSCAN program has been implemented: the enhancement in this program allows for better memory scalability for use with very large databases. Algorithm performance, as compared to the original sequential program and to an initial GPU implementation, is investigated and analyzed.

Published in:

Electro/Information Technology (EIT), 2010 IEEE International Conference on

Date of Conference:

20-22 May 2010