Cart (Loading....) | Create Account
Close category search window
 

Self-descriptive IF THEN rules from signal measurements: A holonic-based computational technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Calabrese, M. ; DIASS, Polytech. of Bari, Bari, Italy

A holon is a bio-inspired conceptual entity that, like cells in a living organism, behaves as a part and a whole at the same time. Holonic systems have been the subject of intense research in the latest years due to their properties such as self-organization, self-similarity and capability of handling hierarchically-nested granularity levels. Lesser attention indeed has been paid by engineers to the aspect of self-description, i. e. the ability to describe itself in terms of self-contained descriptors. Self-description can be useful in measurement settings where the only available knowledge is embedded in data in terms of hidden rules behind observed signals. In this work, a heuristic technique is employed to extract self-descriptive IF THEN rules from measurement signals. These rules are considered holonic in that they represent a whole described in terms of relationships among their parts. An example taken from a real measurement scenario is reported and commented in detail.

Published in:

Computational Intelligence for Measurement Systems and Applications (CIMSA), 2010 IEEE International Conference on

Date of Conference:

6-8 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.