Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

PI Control, PI-Based State Space Control, and Model-Based Predictive Control for Drive Systems With Elastically Coupled Loads—A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thomsen, S. ; Inst. for Power Electron. & Electr. Drives, Christian-Albrechts-Univ. of Kiel, Kiel, Germany ; Hoffmann, N. ; Fuchs, F.W.

Three different control methods for the speed control of drive systems with elastically coupled loads are presented and compared. In drive applications where the load is connected to the driving motor with a drive shaft that has a finite stiffness, unwanted mechanical dynamics can occur. These unwanted dynamics can stress both the mechanical and electrical drive components. Furthermore, the shaft torsion, if neglected in the control synthesis, can dramatically reduce the achievable control performance. To overcome these challenges, the design, analysis, and comparative study of three speed control methods for a drive system with resonant loads are carried out. The considered control methods are the following: a conventional proportional-integral (PI) control, a PI-based state space control, and a model-based predictive control. To ensure a suitable basis for their comparison, the three different speed control methods are designed with equal bandwidths and are verified with the same test setup. Furthermore, all speed control methods presented use only the drive-side speed measurement to control the drive speed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 8 )