Cart (Loading....) | Create Account
Close category search window
 

Dynamic QoS Management and Optimization in Service-Based Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Service-based systems that are dynamically composed at runtime to provide complex, adaptive functionality are currently one of the main development paradigms in software engineering. However, the Quality of Service (QoS) delivered by these systems remains an important concern, and needs to be managed in an equally adaptive and predictable way. To address this need, we introduce a novel, tool-supported framework for the development of adaptive service-based systems called QoSMOS (QoS Management and Optimization of Service-based systems). QoSMOS can be used to develop service-based systems that achieve their QoS requirements through dynamically adapting to changes in the system state, environment, and workload. QoSMOS service-based systems translate high-level QoS requirements specified by their administrators into probabilistic temporal logic formulae, which are then formally and automatically analyzed to identify and enforce optimal system configurations. The QoSMOS self-adaptation mechanism can handle reliability and performance-related QoS requirements, and can be integrated into newly developed solutions or legacy systems. The effectiveness and scalability of the approach are validated using simulations and a set of experiments based on an implementation of an adaptive service-based system for remote medical assistance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:37 ,  Issue: 3 )

Date of Publication:

May-June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.