By Topic

The Effect of Border Noise on the Performance of Projection-Based Page Segmentation Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shafait, F. ; Multimedia Anal. & Data Min. (MADM) Competence Center, German Res. Center for Artificial Intell. (DFKl GmbH), Kaiserslautern, Germany ; Breuel, T.M.

Projection methods have been used in the analysis of bitonal document images for different tasks such as page segmentation and skew correction for more than two decades. However, these algorithms are sensitive to the presence of border noise in document images. Border noise can appear along the page border due to scanning or photocopying. Over the years, several page segmentation algorithms have been proposed in the literature. Some of these algorithms have come into widespread use due to their high accuracy and robustness with respect to border noise. This paper addresses two important questions in this context: 1) Can existing border noise removal algorithms clean up document images to a degree required by projection methods to achieve competitive performance? 2) Can projection methods reach the performance of other state-of-the-art page segmentation algorithms (e.g., Docstrum or Voronoi) for documents where border noise has successfully been removed? We perform extensive experiments on the University of Washington (UW-III) data set with six border noise removal methods. Our results show that although projection methods can achieve the accuracy of other state-of-the-art algorithms on the cleaned document images, existing border noise removal techniques cannot clean up documents captured under a variety of scanning conditions to the degree required to achieve that accuracy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 4 )