By Topic

Max-Min Distance Analysis by Using Sequential SDP Relaxation for Dimension Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Bian ; Centre for Quantum Comput. & Intell. Syst., Univ. of Technol., Sydney, NSW, Australia ; Dacheng Tao

We propose a new criterion for discriminative dimension reduction, max-min distance analysis (MMDA). Given a data set with C classes, represented by homoscedastic Gaussians, MMDA maximizes the minimum pairwise distance of these C classes in the selected low-dimensional subspace. Thus, unlike Fisher's linear discriminant analysis (FLDA) and other popular discriminative dimension reduction criteria, MMDA duly considers the separation of all class pairs. To deal with general case of data distribution, we also extend MMDA to kernel MMDA (KMMDA). Dimension reduction via MMDA/KMMDA leads to a nonsmooth max-min optimization problem with orthonormal constraints. We develop a sequential convex relaxation algorithm to solve it approximately. To evaluate the effectiveness of the proposed criterion and the corresponding algorithm, we conduct classification and data visualization experiments on both synthetic data and real data sets. Experimental results demonstrate the effectiveness of MMDA/KMMDA associated with the proposed optimization algorithm.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 5 )