By Topic

Interference-Aware Routing in Wireless Multihop Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Parissidis, G. ; Comput. Eng. & Networks Lab., ETH Zurich, Zürich, Switzerland ; Karaliopoulos, M. ; Spyropoulos, Thrasyvoulos ; Plattner, B.

Interference is an inherent characteristic of wireless (multihop) communications. Adding interference-awareness to important control functions, e.g., routing, could significantly enhance the overall network performance. Despite some initial efforts, it is not yet clearly understood how to best capture the effects of interference in routing protocol design. Most existing proposals aim at inferring its effect by actively probing the link. However, active probe measurements impose an overhead and may often misrepresent the link quality due to their interaction with other networking functions. Therefore, in this paper we follow a different approach and: 1) propose a simple yet accurate analytical model for the effect of interference on data reception probability, based only on passive measurements and information locally available at the node; 2) use this model to design an efficient interference-aware routing protocol that performs as well as probing-based protocols, yet avoids all pitfalls related to active probe measurements. To validate our proposal, we have performed experiments in a real testbed, setup in our indoor office environment. We show that the analytical predictions of our interference model exhibit good match with both experimental results as well as more complicated analytical models proposed in related literature. Furthermore, we demonstrate that a simple probeless routing protocol based on our model performs at least as good as well-known probe-based routing protocols in a large set of experiments including both intraflow and interflow interference.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 5 )