By Topic

Maximizing Capacity in Multihop Cognitive Radio Networks under the SINR Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Shi ; Virginia Polytechnic Institute and State University, Blacksburg ; Y. Thomas Hou ; Sastry Kompella ; Hanif D. Sherali

Cognitive radio networks (CRNs) have the potential to utilize spectrum efficiently and are positioned to be the core technology for the next-generation multihop wireless networks. An important problem for such networks is its capacity. We study this problem for CRNs in the SINR (signal-to-interference-and-noise-ratio) model, which is considered to be a better characterization of interference (but also more difficult to analyze) than disk graph model. The main difficulties of this problem are two-fold. First, SINR is a nonconvex function of transmission powers; an optimization problem in the SINR model is usually a nonconvex program and NP-hard in general. Second, in the SINR model, scheduling feasibility and the maximum allowed flow rate on each link are determined by SINR at the physical layer. To maximize capacity, it is essential to follow a cross-layer approach, but joint optimization at physical (power control), link (scheduling), and network (flow routing) layers with the SINR function is inherently difficult. In this paper, we give a mathematical characterization of the joint relationship among these layers. We devise a solution procedure that provides a (1- varepsilon ) optimal solution to this complex problem, where varepsilon is the required accuracy. Our theoretical result offers a performance benchmark for any other algorithms developed for practical implementation. Using numerical results, we demonstrate the efficacy of the solution procedure and offer quantitative understanding on the interaction of power control, scheduling, and flow routing in a CRN.

Published in:

IEEE Transactions on Mobile Computing  (Volume:10 ,  Issue: 7 )