By Topic

Learning a Propagable Graph for Semisupervised Learning: Classification and Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bingbing Ni ; National University of Singapore, Singapore ; Shuicheng Yan ; Ashraf Kassim

In this paper, we present a novel framework, called learning by propagability, for two essential data mining tasks, i.e., classification and regression. The whole learning process is driven by the philosophy that the data labels and the optimal feature representation jointly constitute a harmonic system, where the data labels are invariant with respect to the propagation on the similarity graph constructed based on the optimal feature representation. Based on this philosophy, a unified framework of learning by propagability is proposed for the purposes of both classification and regression. Specifically, this framework has three characteristics: 1) the formulation unifies the label propagation and optimal feature representation pursuing, and thus the label propagation process is enhanced by benefiting from the refined similarity graph constructed with the derived optimal feature representation instead of the original representation; 2) it unifies the formulations for supervised and semisupervised learning in both classification and regression tasks; and 3) it can directly deal with the multiclass classification problems. Extensive experiments for the classification task on UCI toy data sets, handwritten digit recognition, face recognition, and microarray recognition as well as for the regression task of human age estimation on the FG-NET aging database, all validate the effectiveness of our proposed learning framework, compared with the state-of-the-art counterparts.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:24 ,  Issue: 1 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal