By Topic

Hierarchical Line Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hlawatsch, M. ; Visualization Res. Center, Univ. Stuttgart (VISUS), Stuttgart, Germany ; Sadlo, F. ; Weiskopf, D.

This paper presents an acceleration scheme for the numerical computation of sets of trajectories in vector fields or iterated solutions in maps, possibly with simultaneous evaluation of quantities along the curves such as integrals or extrema. It addresses cases with a dense evaluation on the domain, where straightforward approaches are subject to redundant calculations. These are avoided by first calculating short solutions for the whole domain. From these, longer solutions are then constructed in a hierarchical manner until the designated length is achieved. While the computational complexity of the straightforward approach depends linearly on the length of the solutions, the computational cost with the proposed scheme grows only logarithmically with increasing length. Due to independence of subtasks and memory locality, our algorithm is suitable for parallel execution on many-core architectures like GPUs. The trade-offs of the method - lower accuracy and increased memory consumption - are analyzed, including error order as well as numerical error for discrete computation grids. The usefulness and flexibility of the scheme are demonstrated with two example applications: line integral convolution and the computation of the finite-time Lyapunov exponent. Finally, results and performance measurements of our GPU implementation are presented for both synthetic and simulated vector fields from computational fluid dynamics.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 8 )