By Topic

Neural network model-based predictive control for multivariable nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alamdari, B.V. ; Electr. Eng. Dept., K. N. Toosi Univ. of Technol., Tehran, Iran ; Fatehi, A. ; Khaki-Sedigh, A.

A nonlinear model predictive control (NMPC) algorithm based on a neural network model is proposed for multivariable nonlinear systems. A multi-input multi-output model is developed using multilayer perceptron (MLP) neural network which is trained by Levenberg-Marquardt algorithm and amplitude modulated pseudo random binary (APRBS) signals with noise as data sets. Model predictive control also uses Levenberg-Marquardt algorithm for the control signal optimization. The control performance is improved by using a disturbance model that compensates both model mismatch and external disturbance. The learning rate of disturbance estimation network changes adaptively to treat the model mismatch differently from the external disturbance. Simulation results using the quadruple-tank are employed to show the effectiveness of the method.

Published in:

Control Applications (CCA), 2010 IEEE International Conference on

Date of Conference:

8-10 Sept. 2010