By Topic

System identification of nonlinear dynamical models: Application to wastewater treatment plant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gasperin, M. ; Jozef Stefan Inst., Ljubljana, Slovenia ; Vrecko, D. ; Juričič, D.

The paper presents a novel approach to identification of stochastic nonlinear dynamic systems using efficient approximation methods. The motivation behind this work is to develop a computationally efficient and robust algorithm for estimation of wastewater treatment plant model parameters. The mathematical model of the plant is required for the application of advanced predictive control algorithms and condition monitoring. The presented algorithm employs the Expectation-Maximization algorithm to compute the Maximum likelihood estimates of the unknown model parameters. The algorithm uses the Unscented Transformation (UT) to approximate the posterior distribution of the random variable that undergoes a nonlinear transformations. The advantage of this approach lies in efficient approximation methods that greatly reduce the computational load of the algorithm and is therefore suitable for on-line implementation.

Published in:

Control Applications (CCA), 2010 IEEE International Conference on

Date of Conference:

8-10 Sept. 2010