Cart (Loading....) | Create Account
Close category search window

Optimized reflector stacks for solidly mounted bulk acoustic wave resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jose, S. ; MESA+ Inst. for Nanotechnol., Univ. of Twente, Enschede, Netherlands ; Jansman, A.B.M. ; Hueting, R.J.E. ; Schmitz, J.

The quality factor (Q) of a solidly mounted bulk acoustic wave resonator (SMR) is limited by substrate losses, because the acoustic mirror is traditionally optimized to reflect longitudinal waves only. We propose two different design approaches derived from optics to tailor the acoustic mirror for effective reflection of both longitudinal and shear waves. The first one employs the stopband theory in optics; the second one takes advantage of the periodic nature of reflection spectra in a Bragg reflector: the diffraction grating design approach. The optimized design using stopband theory reaches a calculated minimum transmission of -25 dB and -20 dB at resonance frequency for longitudinal and shear waves, respectively, for various practical reflector material combinations. Using the diffraction grating approach, a near quarter-wave performance is maintained for longitudinal waves, whereas shear waves reach minimum transmission below -26 dB. However, this design does necessitate relatively thick layers. The experimental results show good agreement with finite element models (FEM). The extracted 1-D Q for the realized shear optimized devices was increased to around 3300.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:57 ,  Issue: 12 )

Date of Publication:

December 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.