By Topic

Performance analysis of dynamic locking with the no-waiting policy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. K. Ryu ; Digital Equipment Corp., Mountain View, CA, USA ; A. Thomasian

A transaction processing system with two-phase dynamic locking with the no waiting policy (DLNW) for concurrency control is considered. In this method, transactions making conflicting lock requests are aborted and restarted rather than blocked, thereby eliminating blocking delays (and deadlocks), but making it susceptible to cyclic restarts. Cyclic restarts are dealt with by delaying the restart of a transaction encountering a lock conflict or replacing it with a new transaction. Analytic solution methods for evaluating the performance of the variants of the DLNW method are described. The analytic methods, validated against simulation and shown to be acceptably accurate, are used to study the effect of the following parameters on system performance: transaction size and its distribution, degree of concurrency, the throughput characteristic of the computer system, and the mixture of read-only query and update transactions. A comparison of the DLNW and dynamic locking with waiting (DLW) methods shows that DLW provides higher throughput than DLNW, except when there is no hardware resource contention and conflicted transactions can be replaced by new transactions. The DLNW method outperforms the time-stamp ordering method, as observed from simulation results as well as case by case analyses of possible scenarios

Published in:

IEEE Transactions on Software Engineering  (Volume:16 ,  Issue: 7 )