By Topic

LDA-Based Clustering Algorithm and Its Application to an Unsupervised Feature Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng-Hsuan Li ; Inst. of Electr. Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Bor-Chen Kuo ; Chin-Teng Lin

Research has shown fuzzy c-means (FCM) clustering to be a powerful tool to partition samples into different categories. However, the objective function of FCM is based only on the sum of distances of samples to their cluster centers, which is equal to the trace of the within-cluster scatter matrix. In this study, we propose a clustering algorithm based on both within- and between-cluster scatter matrices, extended from linear discriminant analysis (LDA), and its application to an unsupervised feature extraction (FE). Our proposed methods comprise between- and within-cluster scatter matrices modified from the between- and within-class scatter matrices of LDA. The scatter matrices of LDA are special cases of our proposed unsupervised scatter matrices. The results of experiments on both synthetic and real data show that the proposed clustering algorithm can generate similar or better clustering results than 11 popular clustering algorithms: K-means, K-medoid, FCM, the Gustafson-Kessel, Gath-Geva, possibilistic c-means (PCM), fuzzy PCM, possibilistic FCM, fuzzy compactness and separation, a fuzzy clustering algorithm based on a fuzzy treatment of finite mixtures of multivariate Student's t distributions algorithms, and a fuzzy mixture of the Student's t factor analyzers model. The results also show that the proposed FE outperforms principal component analysis and independent component analysis.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )