Cart (Loading....) | Create Account
Close category search window

Carbon Nanotubes for VLSI: Interconnect and Transistor Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Carbon nanotubes (CNTs) offer unique properties such as the highest current density, ballistic transport, ultrahigh thermal conductivity, and extremely high mechanical strength. Because of these remarkable properties, they have been expected for use as wiring materials and as alternate channel materials for extending complementary metal-oxide-semiconductor (CMOS) performance in future very large scale integration (VLSI) technologies. In this paper, we report the present status of CNT growth technologies and the applications for via interconnects (vertical wiring) and field-effect transistors (FETs). We fabricated CNT via and evaluated its robustness over a high-density current. In our technology, multiwalled carbon nanotubes (MWNTs) were successfully grown at temperatures as low as 365°C using Co catalyst nanoparticles, which were formed and deposited by a custom-designed particle generation and deposition system. The density of MWNTs grown at 450°C reaches more than 1×1012/cm2. MWNTs were grown in via holes with a diameter as small as 40 nm. The resistance of CNT vias with a diameter of 160 nm was found to be of the same order as that of tungsten plugs. The CNT via was able to sustain a current density as high as 5.0×106A/cm2 at 105°C for 100 h without any deterioration in its properties. We propose a Si-process compatible technique to control carrier polarity of CNFETs by utilizing fixed charges introduced by the gate oxide. High-performance p- and n-type CNFETs and CMOS inverters with stability in air have been realized.

Published in:

Proceedings of the IEEE  (Volume:98 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.