By Topic

Performance analysis of traffic surges in multi-class communication networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonckheere, M.T.S. ; Dept. de Mat., Univ. de Buenos Aires, Buenos Aires, Argentina ; Nunez-Queija, R. ; Prabhu, B.J.

In multi-class communication networks, traffic surges due to one class of users can significantly degrade the performance for other classes. During these transient periods, it is thus of crucial importance to implement priority mechanisms allowing the conservation of the quality of service experienced by the affected classes, while ensuring that the temporarily unstable class is not entirely neglected. In this paper, we examine - for a suitably-scaled set of parameters - the complex interaction occurring between several classes of traffic when an unstable class is penalized proportionally to its level of congestion. We characterize the evolution of the performance measures of the network from the moment the initial surge takes place until the system reaches its equilibrium. We show that, using a time-space-transition-scaling, the trajectories of the temporarily unstable class can be described by a differential equation, while those of the stable classes retain their stochastic nature. In particular, we show that the temporarily unstable class evolves at a time-scale which is much slower than that of the stable classes. Although the time-scales decouple, the dynamics of the temporarily unstable and the stable classes continue to influence one another. We further proceed to characterize the obtained differential equations for several simple network examples. In particular, the macroscopic asymptotic behavior of the unstable class allows us to gain important qualitative insights on how the bandwidth allocation affects performance.

Published in:

Teletraffic Congress (ITC), 2010 22nd International

Date of Conference:

7-9 Sept. 2010