By Topic

Low Cost Hardware Implementation of Logarithm Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Gutierrez ; Departamento de Física y Arquitectura de Computadores, Universidad Miguel Hernandez. Adva. De la Universidad s/n. Edif. Quorum V, Alicante, Spain ; J. Valls

A low cost, high-speed architecture for the computation of the binary logarithm is proposed. It is based on the Mitchell approximation with two correction stages: a piecewise linear interpolation with power-of-two slopes and truncated mantissa, and a LUT-based correction stage that correct the piecewise interpolation error. The architecture has been implemented in an FPGA device and the results are compared with other low cost architectures requiring less area and achieving high-speed.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:19 ,  Issue: 12 )