Cart (Loading....) | Create Account
Close category search window
 

Optimal Stochastic Signaling for Power-Constrained Binary Communications Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goken, C. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Gezici, S. ; Arikan, O.

Optimal stochastic signaling is studied under second and fourth moment constraints for the detection of scalar-valued binary signals in additive noise channels. Sufficient conditions are obtained to specify when the use of stochastic signals instead of deterministic ones can or cannot improve the error performance of a given binary communications system. Also, statistical characterization of optimal signals is presented, and it is shown that an optimal stochastic signal can be represented by a randomization of at most three different signal levels. In addition, the power constraints achieved by optimal stochastic signals are specified under various conditions. Furthermore, two approaches for solving the optimal stochastic signaling problem are proposed; one based on particle swarm optimization (PSO) and the other based on convex relaxation of the original optimization problem. Finally, simulations are performed to investigate the theoretical results, and extensions of the results to M-ary communications systems and to other criteria than the average probability of error are discussed.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 12 )

Date of Publication:

December 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.