By Topic

Compensation strategy of actual commutations for PV transformerless grid-connected converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Buticchi ; DII, University of Parma, via G. P. Usberti 181/A, 43100, Italy ; G. Franceschini ; E. Lorenzani

Photovoltaic grid-connected converters usually embed a high-frequency or a line transformer, which guarantees galvanic isolation between the photovoltaic field and the mains. In order to increase efficiency and reduce the total cost of the system, the transformer has been removed, and special topologies of converter have been studied in order to limit the ground leakage current that arises with the galvanic connection. In fact, the parasitic capacitance between the photovoltaic cells and the metallic frame of the panel allows high ground leakage current (i.e. common mode current) to be injected into the grid. Actual solutions rely heavily on the symmetry of the system to address the problem. This paper presents a novel strategy to compensate for non-ideal switching behavior of power devices, which is immune to layout asymmetries and tolerance of parameters. Simulation results show the feasibility of the proposed solution.

Published in:

Electrical Machines (ICEM), 2010 XIX International Conference on

Date of Conference:

6-8 Sept. 2010