By Topic

Using enhanced standard particle swarm optimization for solving multi-mode project scheduling problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reuy-Maw Chen ; Computer Science and Information Engineering, NCUT, Taichung 411, Taiwan, R.O.C ; Yu-Cheng Chien ; Fu-Ren Hsieh

Multi-mode project scheduling problem is a complex and confirmed to be NP-hard problem. Many researchers have devoted themselves for solving a variety of scheduling problems. Meta-heuristic is a promoting scheme. Among them, particle swarm optimization (PSO) has been well applied for solving different problems. However, PSO usually leads to premature convergence and trapped on local optimal. Hence, a modified global best experience communication with random links to make stable convergence is proposed in this study. Moreover, a correction mechanism for infeasible solution is also provided. The efficiency of proposed scheme is verified via testing the largest scale problem in benchmark problems, named multi-mode resource-constrained project scheduling problem that is a generalized project scheduling problem collected in PSPLIB. Experimental results demonstrate that the proposed approach is effective and can make stable convergence. Moreover, this approach is able to efficiently solve MRCPSP class problems.

Published in:

Educational and Information Technology (ICEIT), 2010 International Conference on  (Volume:2 )

Date of Conference:

17-19 Sept. 2010