By Topic

Development and Implementation of Parameterized FPGA-Based General Purpose Neural Networks for Online Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gomperts, A. ; Satellite Services B.V., Noordwijk, Netherlands ; Ukil, A. ; Zurfluh, F.

This paper presents the development and implementation of a generalized backpropagation multilayer perceptron (MLP) architecture described in VLSI hardware description language (VHDL). The development of hardware platforms has been complicated by the high hardware cost and quantity of the arithmetic operations required in online artificial neural networks (ANNs), i.e., general purpose ANNs with learning capability. Besides, there remains a dearth of hardware platforms for design space exploration, fast prototyping, and testing of these networks. Our general purpose architecture seeks to fill that gap and at the same time serve as a tool to gain a better understanding of issues unique to ANNs implemented in hardware, particularly using field programmable gate array (FPGA). The challenge is thus to find an architecture that minimizes hardware costs, while maximizing performance, accuracy, and parameterization. This work describes a platform that offers a high degree of parameterization, while maintaining generalized network design with performance comparable to other hardware-based MLP implementations. Application of the hardware implementation of ANN with backpropagation learning algorithm for a realistic application is also presented.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 1 )