By Topic

A 0.5- \mu V _{\rm \rms} 12- \mu W Wirelessly Powered Patch-Type Healthcare Sensor for Wearable Body Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Long Yan ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Yoo, J. ; Binhee Kim ; Hoi-Jun Yoo

A wirelessly powered patch-type healthcare sensor IC is presented for a wearable body sensor network (W-BSN) to continuously monitor personal vital signals. Thick-film electrodes are screen printed on a fabric by planar-fashionable circuit board (P-FCB) technology on which stainless steel powder with a grain size of 100 μ m is added to reduce both contact impedance as well as motion artifacts. A nested chopped amplifier (NCA) is designed and optimized for the proposed patch-type healthcare sensor with a reduced electrode referred noise of 0.5 μVrms. A programmable gain and bandwidth amplifier (PGA) stage is also implemented to accommodate various dynamic ranges of vital signals. A 10-b folded successive approximation register (SAR) analog-to-digital converter (ADC) reduces capacitive digital-to-analog conversion size by 94% and relaxes the power budget of the ADC driver by 36%. Measured sensor resolution is 9.2 b and rejects common-mode interference larger than 100 dB while consuming only 12 μ W of power supplied wirelessly. A 2.0 mm × 1.3 mm sensor IC is fabricated in 0.18-μm 1P6M CMOS technology. The chip is directly integrated between two screen printed electrodes and stacked by a screen printed fabric inductor. With the proposed patch-type sensor, personal healthcare without expensive batteries is possible in W-BSN and greatly improves wearability and convenience in use.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 11 )