By Topic

Backlight power reduction using efficient image compensation for mobile devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tae-Hyun Kim ; Mobile Commun. R&D, LG Electron., Inc., Seoul, South Korea ; Kang-Sun Choi ; Sung-Jea Ko

Since backlight dimming widely used for power reduction of mobile devices degrades the image quality in brightness and contrast, image enhancement is exploited to compensate the degradation. In this paper, we propose a novel backlight power reduction scheme using an efficient image compensation algorithm that scales discrete cosine transform (DCT) coefficients of image in the compressed domain. To reduce the computational burden of the conventional backlight dimming method where decompression is performed prior to image compensation in the spatial domain, we introduce a computationally efficient image compensation algorithm that processes only dominant DCT coefficients of images using a mapping function in the DCT domain. Experimental results indicate that our proposed method provides higher visual quality with reduced complexity as compared to conventional image compensation schemes.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 3 )