Cart (Loading....) | Create Account
Close category search window

Opportunistic cooperation and optimal power allocation for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Runping Yuan ; Dept. of Inf. & Commun. Eng., Xi''an Jiaotong Univ., Xi''an, China ; Taiyi Zhang ; Jianxiong Huang ; Li Sun

Cooperative communications is a promising technology to improve the performance of wireless sensor networks. In this paper, a dual-hop wireless cooperative network with opportunistic amplify-and-forward relaying is investigated over independent and non-identically distributed Nakagami-m fading channels. Due to the complicated form of the probability density function of the instantaneous signal-to-noise ratio (SNR), the symbol error rate and outage probability expressions are difficult to obtain in closed form. Taking advantage of Maclaurin series expansion of the probability density function of the output instantaneous SNR, we present the asymptotic symbol error rate and outage probability expressions at medium and high SNR regions, and the optimal power allocation scheme between the source and opportunistic relay is also proposed to minimize the outage probability. Simulation results demonstrate that the derived symbol error rate and outage probability matches well with the Monte-Carlo simulations. In addition, it is verified that the optimal power allocation scheme outperforms the equal power allocation scheme in terms of outage probability.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.