Cart (Loading....) | Create Account
Close category search window

Energy consumption minimization for mobile and wireless devices - a cognitive approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
He, A. ; Bradley Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Srikanteswara, S. ; Bae, K.K. ; Reed, J.H.
more authors

Energy consumption for mobile and wireless communication device, such as cell phones, has long been an important aspect for both designers and customers. This paper shows how a cognitive radio (CR) framework can help to reduce system energy consumption of a mobile and wireless communication device based on the application quality of service requirement, the channel condition, and the radio capabilities and characteristics. The CR framework enables not only adaptation of modulation, coding rate, coding gain, and radiated power as conventional adaptive modulation (AM) scheme, but also joint adjustment of radio component characteristics (e.g., power amplifier (PA) characteristics) to achieve high energy efficiency. A unified PA efficiency model characterizing theoretical Class A, Class B, and practical PAs is adopted and enables the analysis of the impact of different radio configurations and channel conditions on energy efficiency. Significant energy savings (up to 90%) using the proposed CR framework for systems with theoretical PAs and with a realistic PA can be achieved compared with the conventional AM approach in simulation. This framework can also be used to manage other radio resources.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.