By Topic

Robust Transceiver Design for K-Pairs Quasi-Static MIMO Interference Channels via Semi-Definite Relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chiu, E. ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China ; Lau, V.K.N. ; Huang Huang ; Tao Wu
more authors

In this paper, we propose a robust transceiver design for the K-pair quasi-static MIMO interference channel. Each transmitter is equipped with M antennas, each receiver is equipped with N antennas, and the kth transmitter sends Lk independent data streams to the desired receiver. In the literature, there exist a variety of theoretically promising transceiver designs for the interference channel such as interference alignment-based schemes, which have feasibility and practical limitations. In order to address practical system issues and requirements, we consider a transceiver design that enforces robustness against imperfect channel state information (CSI) as well as fair performance among the users in the interference channel. Specifically, we formulate the transceiver design as an optimization problem to maximize the worst-case signal-to-interference-plus-noise ratio among all users. We devise a low complexity iterative algorithm based on alternative optimization and semi-definite relaxation techniques. Numerical results verify the advantages of incorporating into transceiver design for the interference channel important practical issues such as CSI uncertainty and fairness performance.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 12 )