By Topic

An Iterative Decoding Algorithm with Backtracking to Lower the Error-Floors of LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingyu Kang ; Augusta Technology USA Inc., Santa Clara, CA 95054 ; Qin Huang ; Shu Lin ; Khaled Abdel-Ghaffar

Error-floors are the main reason for excluding LDPC codes from applications requiring very low bit-error rate. They are attributed to a particular structure in the codes' Tanner graphs, known as trapping sets, which traps the message-passing algorithms commonly used to decode LDPC codes, and prevents decoding from converging to the correct codeword. A technique is proposed to break trapping sets while decoding. Based on decoding results leading to a decoding failure, some bits are identified in a previous iteration and flipped and decoding is restarted. This backtracking may enable the decoder to get out of the trapped state. A semi-analytical method is also proposed to predict the error-floor after backtracking. Simulation results indicate the effectiveness of the proposed technique in lowering the error-floor. The technique, which has moderate complexity overhead, is applicable to any code without requiring a prior knowledge of the structure of its trapping sets.

Published in:

IEEE Transactions on Communications  (Volume:59 ,  Issue: 1 )