By Topic

Automatic Detection of Pathological Voices Using Complexity Measures, Noise Parameters, and Mel-Cepstral Coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Julián D. Arias-Londoño ; Department ICS, Universidad Politécnica de Madrid, Madrid, Spain ; Juan I. Godino-Llorente ; Nicolás Sáenz-Lechón ; Víctor Osma-Ruiz
more authors

This paper proposes a new approach to improve the amount of information extracted from the speech aiming to increase the accuracy of a system developed for the automatic detection of pathological voices. The paper addresses the discrimination capabilities of 11 features extracted using nonlinear analysis of time series. Two of these features are based on conventional nonlinear statistics (largest Lyapunov exponent and correlation dimension), two are based on recurrence and fractal-scaling analysis, and the remaining are based on different estimations of the entropy. Moreover, this paper uses a strategy based on combining classifiers for fusing the nonlinear analysis with the information provided by classic parameterization approaches found in the literature (noise parameters and mel-frequency cepstral coefficients). The classification was carried out in two steps using, first, a generative and, later, a discriminative approach. Combining both classifiers, the best accuracy obtained is 98.23% ± 0.001.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 2 )