By Topic

An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ming Li ; Microwave Photonics Res. Lab., Univ. of Ottawa, Ottawa, ON, Canada ; Chao Wang ; Wangzhe Li ; Jianping Yao

An unbalanced temporal pulse-shaping (TPS) system for chirped microwave waveform generation is proposed and demonstrated. The proposed system consists of an ultrashort pulsed source, a Mach-Zehnder modulator and two dispersive elements. The dispersions of the two dispersive elements are opposite in sign, but not identical in magnitude. The entire system is equivalent to a conventional balanced TPS system with two complementary dispersive elements for real-time Fourier transformation and a third dispersive element to achieve a second real-time Fourier transformation. The key contribution of this work is that the third-order dispersion of the dispersive elements is considered, which leads to the generation of a frequency-chirped microwave waveform. A theoretical analysis is performed in which a mathematical model that relates the second- and third-order dispersion of the dispersive elements and the chirp rate of the generated microwave waveform is developed. The theoretical model is then verified by numerical simulations and an experiment. A chirped microwave waveform with different chirp rates of -0.0535 and 0.715 GHz/ns by tuning the third-order dispersion using a tunable chirped fiber Bragg grating is experimentally demonstrated.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 11 )