By Topic

Intelligent Agents for the Game of Go

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Monte-Carlo Tree Search (MCTS) is a very efficient recent technology for games and planning, particularly in the high-dimensional case, when the number of time steps is moderate and when there is no natural evaluation function. Surprisingly, MCTS makes very little use of learning. In this paper, we present four techniques (ontologies, Bernstein races, Contextual Monte-Carlo and poolRave) for learning agents in Monte-Carlo Tree Search, and experiment them in difficult games and in particular, the Game of Go.

Published in:

IEEE Computational Intelligence Magazine  (Volume:5 ,  Issue: 4 )